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Boundary-layer separation is caused by many factors: adverse pressure gradient, shock 
impingement on the boundary layer, discontinuity in the surface contour, etc. One of the 
examples of a body with surface discontinuity is a step on a flat plate. Such a configura ~ 
tion is often present in practical situations and a large number of experimental studies 
have been conducted [i] on flow past a step. Numerical modeling of flow past a step using 
full Navier-Stokes equations have been carried out for a limited range of Reynolds numbers 
(see, e.g., [2]). 

The method of matched asymptotic expansions has been widely used to investigate dis- 
turbed flow in a boundary layer at high Reynolds numbers. A survey of literature on the 
application of this method to the analysis of separated flows can be found in [3-5]. One 
of the important factors in the application of matched asymptotic expansions is the deline- 
ation of characteristic regions of the flow. The division of the flow into different re= 
gions is associated with nonuniform applicability of asymptotic expansions or with differ- 
ent effects of convection, diffusion, pressure gradient, and others on the flow. The objec - 
tive of the present work is the investigation of the structure of disturbed flow past a 

step for a range of parameters proportional to the height of the step. One of the charac- 
teristic regions of such a flow is the region with length scales equal to the order of the 
step height. In another characteristic region the disturbance is propagated upstream from 
the step. Analysis of these regions is presented below. 

I. Consider a laminar flow past a step located at a distance ~ from the leading edge 
of a flat surface. The origin of the cartesian coordinate system coincides with the plate 
leading-edge (Fig. I). The distances along the plate and normal to it and the corresponding 
velocity components, density, pressure, and dynamic viscosity coefficient are denoted by: 
x~, y~, u~u, u~v, p~p, p~u2~p, ~. It is assumed that Re = P~u~/p~ = ~-2(p~, u~, p~ are 
the density, velocity, and dynamic viscosity coefficient in the undisturbed flow) is large, 
but it does not exceed the critical value when transition occurs upstream of the step. It 
is also assumed that the step height H can vary within the range e3/~.H~eS/4. As shown 
in [6], when H ~ O(s3/2), the disturbed flow near the step in the region with length scales 
x ~ y ~ H is described by the complete system of Navier-Stokes equations for incompressible 
flows. The effect of Viscosity in this region becomes negligible with increase in step 
height. To the first approximation, the flow near the step with H > E ~/2 is described by the 
system of Euler equations for incompressible flow. The following expressions are introduced 
for the coordinates and flow variables in the region i near the step (see Fig. i): 

x = t ~ Hz~,  y = Hyl~ ~ = H ~ - l ~ u  1 (x~, y~) + . . . .  v = ( 1 . 1 )  

= He- lav l ( x~ ,  Yl) ~ . . . .  P = Pw + . . . .  p = p ~ / p ~ u ~  + 

§ H%-2a~pwpl  (xl ,  y~) ~ . . . .  a = e#u/Oy (i, 0). 

S u b s t i t u t i n g  ( 1 . 1 )  in  N a v i e r - S t o k e s  e q u a t i o n s  and l e t t i n g  ~ + 0 and H § 0 l e a d  t o  

a t '  l O~ 1 Ou 1 O~' 1 Ou, Out O P l = O ,  u 1 +u l - q -  0"I=0, + =0. ( 1  2) 

The n o - s l i p  b o u n d a r y  c o n d i t i o n s  s p e c i f i e d  on t h e  s t e p  and t h e  f l a t  p l a t e  a r e  

u~(0, 0 ~ y ~  t ) =  0, v~(x~ K O, O ) =  u~(x~ ~ 0 . 1 ) =  0. ( 1 . 3 )  

The b o u n d a r y  c o n d i t i o n s  f o r  t h e  s y s t e m  ( 1 . 2 )  s p e c i f i e d  a s  x z + - ~  depend  on t h e  n a t u r e  o f  
the upstream influence of the step. It is shown below that nonlinear variation in velocity 
profile in the region of a height comparable with the step height and a length exceeding 
the step height are caused by steps Whose heightsare an order of magnitude greater than 
0(Es/4). When H < 0(s5/4) and as x I +-~ the boundary conditions take the form 
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u~(x~-->---co, y~)=  Yl. (1.4) 

The boundary conditions are similar at a far downstream location: 

U]@I---~ co, Yl) = Yl. (1.5) 

The condition for damping at large distances normal to the surface leads to 

u~(x~, y~-~ co) = y~ + o ( l ) .  ( 1 . 6 )  

The solution to the boundary-value problem (1.2)-(1.6) is nonunique. Recirculation zones 
are formed ahead of the step where viscosity plays a crucial role. Thus, if the vorticity 
is constant in the recirculation region, then it is possible to determine its value from the 
condition of spatial periodicity of the flow in the boundary layer located at the edge of 
the recirculation region [7]. As an example of a possible solution to the boundary-value 
problem (1.2)-(1.6), it has been assumed in the present paper that the vorticity in the re- 
circulation region coincides with the vorticity in the undisturbed wall layer upstream of 
the step. A sketch of streamlines obtained by using complex variables is shown in Fig. 2, 
where the dashed lines are streamlines obtained from computations based on Navier-Stokes 
equations using the method described in [6]. In these computations, Re I = PwaH2/Dw s3 was 
equal to 10 4. A qualitative agreement is observed in streamlines obtained from the solution 
of Euler and Navier-Stokes equations. A step of height H ~ O(g 3/4) leads to a change in 
velocity profile in the wall layer ahead of the step with a thickness comparable to the 
height of the step. For further analysis it is necessary to obtain a solution to the Euler 
equations u1(x I § ~, Yl) with arbitrary initial velocity profile u1(x i ~ -~, ix)- In order 
to find the desired solution, it is possible to use the conservation of total pressure along 
a streamline. Let f0 = u1(xl § -=, Yl) and fl = ul(xz + ~, Yl); then from Bernoulli's equa- 
tion 

[1 (~) = ~/]~ (~) --  2Ap, ( 1.7 ) 

where Ap i s  t h e  p r e s s u r e  drop induced  by t h e  s t e p  [Ap = p l ( x l  § ~) - p l ( x l  + - ~ ) ] ;  ~ i s  t h e  
stream function determined from 

= d~/@l. ( 1 . 8 )  

The equations (1.7) and (1.8) give the shape of the veocity profile f1(~)- In order to deter- 
mine the unknown pressure drop Ap, it is necessary to use the boundary condition (1.6), which 
has the form 

[! ] ] lim 1 +  d * - - 2 ~  = lim d ~ - - 2 ~  . ( 1 . 9 )  

The p r e s s u r e  drop Ap can be d e t e r m i n e d  f rom Eq. ( 1 . 9 )  by n u m e r i c a l  i n t e g r a t i o n  u s i n g  
an iterative procedure. The condition (1.9) is equivalent to the condition of conservation 
of total displacement thickness, comprised of the variable part of the displacement thick- 
ness and the step height. The variation in the total displacement thickness over short 
distances could lead to the appearance of large pressure drops that exceed, by an order of 
magnitude, the dynamic pressure present at transverse locations which are at distances of 
the order of the step height normal to the surface. In turn, such changes in velocity 
would cause even larger changes in the total displacement thickness, i.e., they may lead 
to a non-self-consistent flow situation discussed in detail in [8]. The variation in dis- 
placement thickness takes place over a more extensive region, the so-called free-interaction 
region [4, 5]. 
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2. The above described estimates of the pressure drop are obtained in the free-interac- 
tion region 2 

Ap .--, H2/E~,. ( 2 . 1 )  

f rom which  i t  f o l l o w s  t h a t  as  H ~ E s / ~ ,  t h e  p r e s s u r e  d rop  Ap ~ s 1/2 i s  e q u a l ,  by an o r d e r  
o f  m a g n i t u d e ,  t o  t h a t  p r e s s u r e  d r o p  f o r  which  n o n l i n e a r  v a r i a t i o n  in  s h e a r  s t r e s s e s  i s  i n -  
duced  in  t h e  r e g i o n  2 o f  l e n g t h  Ax ~ E 3/~ ahead  o f  t h e  s t e p  [4 ,  5 ] .  A l l  t h e s e  a r e  a p p l i c a b l e  
to subsonic as well as supersonic external flows. Disturbances propagating upstream from 
the step lead to a change in displacement thickness consistent with pressure fluctuations. 
Near the step, in the region i, a shocklike jump (of the scale of the free-interaction region 
2) in pressure takes place for a constant displacement thickness. The streamwise velocity 
profile changes according to (1.7). This is followed further downstream by a damping of dis- 
turbances induced by the step in the free-interaction region (~x % E3/4). The boundary- 
value problem describing the flow in the free-interaction region at supersonic speeds has 
the form [4, 5] 

OU vOU , OP 02U 
U'O"X + -- a y , "O-X -~- o y"-~* ( 2 . 2 )  

at] av ap a l im ( U - -  Y), 

U ( X - , - - - o ~ ,  Y ) =  Y ,  OU/OY(X, Y - - .  o ~ ) =  i,: 

v ( x  < o, o ) =  o, v ( x  > 0 ,  H 1 ) =  0, 

u ( x  ~ co, y )  = y - ~ ,  ~ ( x  ~ o, o) = o, u ( x  > o, g~) = o,: 

U = ~"-114"t~w-11~-114~ I-% 1̂12 allah, ~," V ~ ~-3141~w'-314~-3/4^z/2~-l/&.u, Pw P u~, 
. - -314_ 5/4. 1/4~1/2~3/4 P - ~  e-ll2B~:l~ a - l l ~ : / 2 p ,  X = ~ ~ ~w P~o P x, 

. - -5 /4 .  -- i . I4~3/4^1/2ol/4.  ~--5/4. --1/4 ~314~1/2~114 r r  
Y = ~  ~w a pw p y, H z = v  ~w ~ Pw P n .  

The boundary-value problem (2.2) should be supplemented by Eqs. (1.7)-(1.9) coupling 
velocity profiles at X + -O and X + +0, and also the pressure fluctuation to the left and 
right of the step face. From these relations it follows, in particular, that the streamwise 
velocity on the upper surface of the step becomes nonzero (zero streamwise velocity along 
the zero streamline under the action of the pressure drop AP becomes equal to u w = v~--~). 
We observe that AP < 0, since, for the conservation of total displacement thickness, the in- 
compressible flow near the step should accelerate. 

Consider first the solution to the problem (2.2) for the small parameter H 1 << 1 or 
for H < 0(sS/4). The problem (2.2) can then be linearized: 

U ~ Y - ~ -  U~HI -[- . . . .  V = V~.H~ ~ . . . .  P ---- P~It~ + ...,: ( 2 . 3 )  

OU 1 ~ OP 1 02U1 O(f I OV 1 OU 
Y -0--2- n- VI + T2"~= ~ 'r~ '  0--2- + ~ = O, P~ = - l im -_\7, 

y-.~ oo OX 

v J x - - , -  - - ~ ,  Y )  = o, o u / o Y ( x ,  Y ~ oo) = o, u ~ ( x  ~ ~o, y )  = - - t , :  

u ~ ( x  < o, o) = o, u J x  > 0 ,  0) = - ~ ,  v ~ ( x ,  o) = o 

We n o t e  t h a t  t h e  p r e s s u r e  d r o p  in  t h e  r e g i o n  1 f o r  H~ << 1 i s  o f  h i g h e r  o r d e r  (3P~ = O(H~) ) .  
The solution to the linear problem (2.3) is obtained in [9] for the flow in near the start- 
ing and end points of the motion of the surface. 

For finite values of the parameter Hz, the solution to the problem (2.2) may be obtained 
numerically. Here, it is solved using the numerical method of [9]. The principal difficulty 
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in the integration of Eq. (2.2) is associated with the appearance of nonzero velocity at the 
surface when X > 0. A subregion is introduced within the computational domain to overcome 
this problem and obtain a correct solution. The need for the introduction of such a subregion 
is associated with the formation of a boundary layer at the upper surface of the step. 

The solution to the problem (2.2) is obtained for a number of values of the parameter 
H I. The distribution of pressure fluctuations on the plane (X < 0) and on the step surface 
(X > 0) are shown in Fig. 3. The pressure fluctuation upstream of the step also increases 
with increase in the step height H I. For the range of values of the parameter H I studied 
here, there is a characteristic monotonic increase in the pressure drop AP with increase 
in H I. The solution, expressed as a power series X(P = P(0) + CIX I/2) for X + +0, was obtained 
in [9]. The second term in this series represents the accelerating flow required to con- 
serve the local total displacement thickness with increase in the developing boundary-layer 
thickness. The numerical procedure for the integration of the boundary-value problem (2.2) 
was the following. At a certain point upstream of the step, a positive pressure fluctuation 
was specified, and the problem was subsequently solved by marching technique. The Choice of 
the initial pressure disturbance was made from the condition for the damping of disturbances 
at large distances downstream of the step. When the initial disturbance is too small, the 
solution ended at the singluar point X0, where P(X + X 0) +-~. Such a solution describes a 
flow near the step of finite length for which a large negative pressure drop is specified 
at the base section (at X = X0). The solutions corresponding to too large an initial pressure 
disturbance were characterized by an increase in pressure in the region downstream of the 
step surface, which finally resulted in a decrease in skin-friction to zero. A solution of 
this type corresponds to the flow past a step with a flap installed at a certain distance 
from the step surface, which causes flow separation. 

The skin-friction distribution along the flat plate (X < 0) and along the step surface 
(X > 0) is shown in Fig. 4. There is a decrease in skin-friction upstream of the step with 
increase in step height. When X = 0, there is a shock-like jump in the value of skin fric- 
tion to infinitely large values, which is associated with the formation of a boundary layer 
along the step surface. Downstream of the step face, for all values of the parameter H I 
under investigation, the surface skin-friction monotonically decreases to the value of skin- 
friction in the undisturbed boundary layer. 

The solution to the problem (2.2) was obtained for a finite range of variation of the 
parameter HI, corresponding to attached (pre-separated) flow upstream of the step. For the 
computation of the flow with HI~2.5, the finite-difference scheme should permit the pres- 
ence of a reverse-flow region upstream of the step. Principles of setting up the comDutational 
scheme for such a flow situation are given in [9]. It is worth mentioning that such a reverse- 
flow region always exists in the flow upstream of the step, and we are concerned about the 
possible increase in the dimensions of such a region by a scale comparable to the length of 
the free-interaction region. An increase in the step height will lead to an increase in the 
dimensions of the separation region and to an upstream displacement of the separation point. 
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